[image:]

Data Engineering Guide

Data Access Control Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Data access control is the cornerstone of data governance, ensuring that users can access the data they need while protecting sensitive information from unauthorized access. Unity Catalog provides a comprehensive access control framework that supports enterprise security requirements.
The Principle of Least Privilege
Effective access control follows the principle of least privilege: users should have access only to the data required for their specific job functions. This approach:
Minimizes Risk: Limits potential damage from compromised accounts or insider threats
Supports Compliance: Meets regulatory requirements for data protection (GDPR, HIPAA, SOX)
Enables Audit: Provides clear evidence of who can access what data
Facilitates Self-Service: Users can confidently explore available data
Access Control Layers
Unity Catalog implements multiple access control layers:
	Layer
	Scope
	Use Case

	Object-level
	Catalog, Schema, Table
	Control access to entire datasets

	Row-level
	Specific rows
	Multi-tenant data, regional restrictions

	Column-level
	Specific columns
	Protect sensitive fields

	Data masking
	Column values
	Show partial data based on context

This guide provides comprehensive coverage of implementing and managing each layer.
2. Permission Model Fundamentals
Understanding the permission model is essential for effective access control design.
2.1 Privilege Types
Unity Catalog supports standard SQL privileges with additional Databricks-specific extensions.
Object Privileges:
	Privilege
	Description
	Applicable Objects

	`SELECT`
	Read data
	Table, View

	`MODIFY`
	Insert, update, delete
	Table

	`CREATE`
	Create child objects
	Catalog, Schema

	`USAGE`
	Access container
	Catalog, Schema

	`READ FILES`
	Read from location
	External Location, Volume

	`WRITE FILES`
	Write to location
	External Location, Volume

	`EXECUTE`
	Run function
	Function

	`ALL PRIVILEGES`
	All applicable
	Any

Administrative Privileges:
	Privilege
	Description

	`MANAGE`
	Manage permissions (grant/revoke)

	`OWNERSHIP`
	Full control including deletion

	`CREATE CATALOG`
	Create new catalogs

	`CREATE EXTERNAL LOCATION`
	Create external locations

	`CREATE STORAGE CREDENTIAL`
	Create storage credentials

2.2 Inheritance Model
Permissions inherit down the hierarchy, simplifying administration:
┌───┐
│ PERMISSION INHERITANCE │
├───┤
│ │
│ GRANT USE CATALOG ON CATALOG production TO analysts; │
│ │ │
│ ▼ │
│ ┌──┐ │
│ │ CATALOG: production │ │
│ │ analysts: USE CATALOG ───▶ │ │
│ └──┘ │
│ │ │
│ │ (Inherits down) │
│ ▼ │
│ ┌──┐ │
│ │ SCHEMA: production.gold │ │
│ │ analysts: Inherited USE CATALOG (but needs USE SCHEMA separately) │ │
│ └──┘ │
│ │ │
│ GRANT USE SCHEMA ON SCHEMA production.gold TO analysts; │
│ GRANT SELECT ON SCHEMA production.gold TO analysts; │
│ │ │
│ ▼ │
│ ┌──┐ │
│ │ All tables in production.gold: analysts have SELECT │ │
│ └──┘ │
│ │
└───┘
2.3 Required Permission Chains
To access a table, users need a complete chain of permissions:
-- Complete permission chain for SELECT access
GRANT USE CATALOG ON CATALOG production TO data_analysts;
GRANT USE SCHEMA ON SCHEMA production.gold TO data_analysts;
GRANT SELECT ON TABLE production.gold.customers TO data_analysts;

-- Alternative: Grant SELECT on entire schema (inherits to all tables)
GRANT USE CATALOG ON CATALOG production TO data_analysts;
GRANT USE SCHEMA ON SCHEMA production.gold TO data_analysts;
GRANT SELECT ON SCHEMA production.gold TO data_analysts;
3. Implementing Object-Level Security
Object-level security controls access to entire catalogs, schemas, tables, and views.
3.1 Catalog-Level Permissions
Catalogs are the primary security boundary for isolating data domains.
-- Create catalogs for different environments
CREATE CATALOG production COMMENT 'Production data - restricted access';
CREATE CATALOG development COMMENT 'Development - broader access';
CREATE CATALOG sandbox COMMENT 'Sandbox - exploration';

-- Grant environment-appropriate access
-- Production: Only specific groups
GRANT USE CATALOG ON CATALOG production TO production_users;
DENY CREATE ON CATALOG production TO data_analysts; -- Prevent table creation

-- Development: Engineers can create
GRANT USE CATALOG ON CATALOG development TO data_engineers;
GRANT CREATE ON CATALOG development TO data_engineers;

-- Sandbox: Open for exploration
GRANT USE CATALOG ON CATALOG sandbox TO all_data_users;
GRANT CREATE ON CATALOG sandbox TO all_data_users;
3.2 Schema-Level Permissions
Schemas provide finer-grained control within a catalog.
-- Medallion architecture permissions
-- Bronze: ETL service only
GRANT USE SCHEMA ON SCHEMA production.bronze TO etl_service_principal;
GRANT SELECT, MODIFY ON SCHEMA production.bronze TO etl_service_principal;

-- Silver: Engineers can read, ETL can modify
GRANT USE SCHEMA ON SCHEMA production.silver TO data_engineers;
GRANT SELECT ON SCHEMA production.silver TO data_engineers;
GRANT SELECT, MODIFY ON SCHEMA production.silver TO etl_service_principal;

-- Gold: Analysts can read
GRANT USE SCHEMA ON SCHEMA production.gold TO data_analysts;
GRANT SELECT ON SCHEMA production.gold TO data_analysts;

-- Sensitive schemas: Restricted groups only
GRANT USE SCHEMA ON SCHEMA production.pii TO pii_authorized_users;
GRANT SELECT ON SCHEMA production.pii TO pii_authorized_users;
3.3 Table-Level Permissions
Individual table permissions for granular control.
-- Grant access to specific tables
GRANT SELECT ON TABLE production.gold.sales_summary TO sales_team;
GRANT SELECT ON TABLE production.gold.customer_segments TO marketing_team;

-- Grant modify access for specific tables (rare in gold layer)
GRANT MODIFY ON TABLE production.gold.manual_adjustments TO finance_leads;

-- Revoke access to sensitive table (override schema grant)
REVOKE SELECT ON TABLE production.gold.employee_salaries FROM data_analysts;
GRANT SELECT ON TABLE production.gold.employee_salaries TO hr_admins;
3.4 View-Based Security
Views provide a powerful mechanism for implementing security logic.
-- Create a secure view that filters data
CREATE OR REPLACE VIEW production.gold.v_regional_sales AS
SELECT
 region,
 product_category,
 sales_amount,
 order_date
FROM production.gold.sales_detail
WHERE region = CASE
 WHEN is_member('region_americas') THEN 'Americas'
 WHEN is_member('region_emea') THEN 'EMEA'
 WHEN is_member('region_apac') THEN 'APAC'
 WHEN is_member('global_analysts') THEN region -- See all
 ELSE NULL
END;

-- Grant access to view (not underlying table)
GRANT SELECT ON VIEW production.gold.v_regional_sales TO regional_analysts;
4. Row-Level Security
Row-level security (RLS) restricts which rows users can see based on their identity or group membership.
4.1 Row Filter Functions
Row filters are SQL functions that return a boolean indicating whether a row should be visible.
-- Create row filter function
CREATE OR REPLACE FUNCTION production.security.region_filter(region_value STRING)
RETURNS BOOLEAN
RETURN (
 -- User can see their region
 (is_member('region_americas') AND region_value = 'Americas')
 OR (is_member('region_emea') AND region_value = 'EMEA')
 OR (is_member('region_apac') AND region_value = 'APAC')
 -- Global team sees all
 OR is_member('global_team')
 -- Admins see all
 OR is_account_group_member('admins')
);

-- Apply row filter to table
ALTER TABLE production.gold.sales
SET ROW FILTER production.security.region_filter ON (region);
4.2 Multi-Tenant Row Security
For applications serving multiple tenants from shared tables:
-- Create tenant filter function
CREATE OR REPLACE FUNCTION production.security.tenant_filter(tenant_id_value STRING)
RETURNS BOOLEAN
RETURN (
 -- Map user's company to tenant_id
 tenant_id_value = (
 SELECT tenant_id
 FROM production.security.user_tenant_mapping
 WHERE user_name = current_user()
)
 -- System admins see all tenants
 OR is_member('system_admins')
);

-- Apply to all tenant-scoped tables
ALTER TABLE production.saas.customer_data
SET ROW FILTER production.security.tenant_filter ON (tenant_id);

ALTER TABLE production.saas.order_data
SET ROW FILTER production.security.tenant_filter ON (tenant_id);
4.3 Time-Based Row Security
Restrict access to data based on time periods:
-- Users can only see recent data unless authorized
CREATE OR REPLACE FUNCTION production.security.date_filter(order_date_value DATE)
RETURNS BOOLEAN
RETURN (
 -- All users can see last 90 days
 order_date_value >= CURRENT_DATE - INTERVAL 90 DAYS
 -- Historical access group can see all
 OR is_member('historical_data_access')
);

ALTER TABLE production.gold.orders
SET ROW FILTER production.security.date_filter ON (order_date);
4.4 Removing Row Filters
-- Remove row filter from table
ALTER TABLE production.gold.sales
DROP ROW FILTER;

-- Verify no row filter
DESCRIBE TABLE EXTENDED production.gold.sales;
-- Check for "Row Filter" in output
5. Column-Level Security
Column-level security controls access to specific columns within a table.
5.1 Column Masking Functions
Column masks transform column values based on user context.
-- Create masking function for email addresses
CREATE OR REPLACE FUNCTION production.security.mask_email(email_value STRING)
RETURNS STRING
RETURN CASE
 -- PII viewers see full email
 WHEN is_member('pii_viewers') THEN email_value
 -- Others see masked version
 ELSE CONCAT(
 LEFT(email_value, 2),
 '****@',
 SPLIT(email_value, '@')[1]
)
END;

-- Apply mask to column
ALTER TABLE production.gold.customers
ALTER COLUMN email SET MASK production.security.mask_email;
5.2 Common Masking Patterns
Phone Number Masking:
CREATE OR REPLACE FUNCTION production.security.mask_phone(phone_value STRING)
RETURNS STRING
RETURN CASE
 WHEN is_member('contact_center') THEN phone_value
 ELSE CONCAT('***-***-', RIGHT(REGEXP_REPLACE(phone_value, '[^0-9]', ''), 4))
END;

ALTER TABLE production.gold.customers
ALTER COLUMN phone SET MASK production.security.mask_phone;
Social Security Number Masking:
CREATE OR REPLACE FUNCTION production.security.mask_ssn(ssn_value STRING)
RETURNS STRING
RETURN CASE
 WHEN is_member('hr_admins') THEN ssn_value
 ELSE CONCAT('XXX-XX-', RIGHT(REGEXP_REPLACE(ssn_value, '[^0-9]', ''), 4))
END;

ALTER TABLE production.hr.employees
ALTER COLUMN ssn SET MASK production.security.mask_ssn;
Credit Card Masking:
CREATE OR REPLACE FUNCTION production.security.mask_credit_card(cc_value STRING)
RETURNS STRING
RETURN CASE
 WHEN is_member('fraud_investigators') THEN cc_value
 ELSE CONCAT(
 'XXXX-XXXX-XXXX-',
 RIGHT(REGEXP_REPLACE(cc_value, '[^0-9]', ''), 4)
)
END;

ALTER TABLE production.payments.transactions
ALTER COLUMN credit_card_number SET MASK production.security.mask_credit_card;
5.3 Numeric Data Masking
Salary Masking with Ranges:
CREATE OR REPLACE FUNCTION production.security.mask_salary(salary_value DECIMAL)
RETURNS STRING
RETURN CASE
 WHEN is_member('hr_compensation') THEN CAST(salary_value AS STRING)
 WHEN is_member('managers') THEN
 CASE
 WHEN salary_value < 50000 THEN '$30K-$50K'
 WHEN salary_value < 75000 THEN '$50K-$75K'
 WHEN salary_value < 100000 THEN '$75K-$100K'
 WHEN salary_value < 150000 THEN '$100K-$150K'
 ELSE '$150K+'
 END
 ELSE 'RESTRICTED'
END;

ALTER TABLE production.hr.employees
ALTER COLUMN salary SET MASK production.security.mask_salary;
5.4 Managing Column Masks
-- View existing masks on a table
DESCRIBE TABLE EXTENDED production.gold.customers;

-- Remove column mask
ALTER TABLE production.gold.customers
ALTER COLUMN email DROP MASK;

-- Check all masked columns in catalog
SELECT
 table_catalog,
 table_schema,
 table_name,
 column_name,
 mask_function_name
FROM system.information_schema.column_masks
WHERE table_catalog = 'production';
6. Access Control Patterns
This section presents common patterns for implementing access control.
6.1 Environment-Based Access
-- Production: Strict access
GRANT USE CATALOG ON CATALOG production TO production_users;
GRANT SELECT ON SCHEMA production.gold TO production_users;

-- No direct write access to production
DENY MODIFY ON CATALOG production TO data_engineers;
-- Only ETL service principals can modify
GRANT MODIFY ON CATALOG production TO `etl-service-principal`;

-- Development: Open for engineers
GRANT ALL PRIVILEGES ON CATALOG development TO data_engineers;

-- Sandbox: Open for all with cleanup policy
GRANT ALL PRIVILEGES ON CATALOG sandbox TO all_users;
-- (Implement automatic cleanup job for old sandbox data)
6.2 Domain-Based Access
-- Sales domain
CREATE CATALOG sales;
GRANT USE CATALOG ON CATALOG sales TO sales_domain_users;
GRANT ALL PRIVILEGES ON CATALOG sales TO sales_platform_team;

-- Finance domain (more restricted)
CREATE CATALOG finance;
GRANT USE CATALOG ON CATALOG finance TO finance_domain_users;
DENY SELECT ON SCHEMA finance.sensitive TO general_users;
GRANT SELECT ON SCHEMA finance.sensitive TO finance_leadership;

-- Cross-domain shared data
CREATE CATALOG shared;
GRANT SELECT ON CATALOG shared TO all_domain_users;
-- Only data platform can create shared assets
GRANT CREATE ON CATALOG shared TO data_platform_team;
6.3 Project-Based Access
-- Create project schema
CREATE SCHEMA development.project_alpha;

-- Grant project team access
CREATE GROUP project_alpha_team;
GRANT USE CATALOG ON CATALOG development TO project_alpha_team;
GRANT USE SCHEMA ON SCHEMA development.project_alpha TO project_alpha_team;
GRANT ALL PRIVILEGES ON SCHEMA development.project_alpha TO project_alpha_team;

-- Grant read access to reviewers
CREATE GROUP project_alpha_reviewers;
GRANT USE CATALOG ON CATALOG development TO project_alpha_reviewers;
GRANT USE SCHEMA ON SCHEMA development.project_alpha TO project_alpha_reviewers;
GRANT SELECT ON SCHEMA development.project_alpha TO project_alpha_reviewers;
6.4 Self-Service with Guardrails
-- Allow users to create personal schemas
-- Pattern: production.user_<username>

-- Create personal schema for user
CREATE SCHEMA production.user_jsmith;
GRANT ALL PRIVILEGES ON SCHEMA production.user_jsmith TO `jsmith@company.com`;

-- User can read from gold, write to personal schema
GRANT SELECT ON SCHEMA production.gold TO `jsmith@company.com`;

-- Automation to create schemas on user onboarding
-- (Implement via API/Terraform based on HR system events)
7. Permission Auditing
Regular auditing ensures access control remains appropriate over time.
7.1 Current Permissions Audit
-- All grants on a specific table
SHOW GRANTS ON TABLE production.gold.customers;

-- All grants to a specific principal
SHOW GRANTS TO `analyst@company.com`;

-- All grants to a group
SHOW GRANTS TO data_analysts;

-- Comprehensive permission report
SELECT
 grantee,
 grantee_type,
 table_catalog,
 table_schema,
 table_name,
 privilege_type,
 is_grantable
FROM system.information_schema.table_privileges
WHERE table_catalog = 'production'
ORDER BY table_schema, table_name, grantee;
7.2 Permission Changes Over Time
-- Recent permission changes (from audit logs)
SELECT
 event_time,
 action_name,
 user_identity.email as actor,
 request_params.securable_type,
 request_params.securable_full_name,
 request_params.principal,
 request_params.privilege
FROM system.access.audit
WHERE action_name IN ('grantPrivilege', 'revokePrivilege')
 AND event_date >= CURRENT_DATE - INTERVAL 7 DAYS
ORDER BY event_time DESC;
7.3 Access Patterns Analysis
-- Who is accessing what data
SELECT
 user_identity.email as user_name,
 request_params.table_full_name as table_accessed,
 COUNT(*) as access_count,
 MAX(event_time) as last_access
FROM system.access.audit
WHERE action_name = 'commandSubmit'
 AND request_params.command_type = 'SELECT'
 AND event_date >= CURRENT_DATE - INTERVAL 30 DAYS
GROUP BY 1, 2
ORDER BY access_count DESC;
8. Best Practices
8.1 Permission Management
	Practice
	Recommendation

	Use Groups
	Never grant to individual users directly

	Inheritance
	Grant at highest appropriate level

	Least Privilege
	Start restrictive, add as needed

	Documentation
	Comment all grants with business justification

	Regular Review
	Quarterly access certification

8.2 Security Function Guidelines
	Practice
	Recommendation

	Function Location
	Create in dedicated security schema

	Testing
	Test with multiple user contexts

	Performance
	Ensure functions don't create bottlenecks

	Maintenance
	Version control function definitions

	Fallback
	Default to most restrictive when context unclear

8.3 Operational Guidelines
-- Always verify grants before applying
-- Use dry-run pattern
SELECT
 'GRANT SELECT ON TABLE production.gold.customers TO data_analysts;' as statement,
 (SELECT COUNT(*) FROM data_analysts) as affected_users;

-- Document grants with comments
-- (Unity Catalog doesn't support grant comments, use external documentation)

-- Use consistent naming
-- Groups: {role}_{domain}_{access_level}
-- Examples: analysts_sales_read, engineers_data_full
9. Troubleshooting
9.1 Access Denied Issues
-- Debug access denied for a user
-- Step 1: Check direct grants
SHOW GRANTS TO `user@company.com`;

-- Step 2: Check group memberships
SELECT group_name
FROM system.information_schema.group_members
WHERE member_name = 'user@company.com';

-- Step 3: Check grants to user's groups
SHOW GRANTS TO data_analysts; -- For each group

-- Step 4: Verify complete permission chain
-- Can they USE the catalog?
SHOW GRANTS ON CATALOG production TO `user@company.com`;
-- Can they USE the schema?
SHOW GRANTS ON SCHEMA production.gold TO `user@company.com`;
-- Can they SELECT the table?
SHOW GRANTS ON TABLE production.gold.customers TO `user@company.com`;
9.2 Row Filter Issues
-- Test row filter function directly
SELECT production.security.region_filter('Americas') as can_see_americas;

-- Check if row filter is applied
DESCRIBE TABLE EXTENDED production.gold.sales;

-- Count rows visible to current user
SELECT COUNT(*) FROM production.gold.sales;
-- Compare to count without filter (as admin)
9.3 Column Mask Issues
-- Test mask function directly
SELECT production.security.mask_email('user@example.com');

-- Verify mask is applied
DESCRIBE TABLE EXTENDED production.gold.customers;

-- Check masked output
SELECT email FROM production.gold.customers LIMIT 5;
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

